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INTRODUCTION 

PERHAPS the most common boundary condition which has 
been applied to heat conduction and diffusion problems 
equates the surface flux to a constant multiple of the differ- 
ence between the surface temperature, or concentration, and 
the environmental value. The following analysis is devoted 
to heat conduction but the discussion can be transferred 
directly to any diffusion type problem. 

For heat transfer problems the condition at a body surface. 
commonly referred to as the Newton cooling boundary con- 
dition, may be expressed as 

-kg= H(T-T,) (1) 

where T is the surface temperature, T, the environmental 
temperature, ajan the derivative in the direction of the out- 
ward normal, k the thermal conductivity of the body and 
H a constant dependent on environmental properties and 
conditions. The combination h = H/k is called the heat trans- 
fer coefficient or surface conductance; an assumption of a 
constant value for h therefore presumes a constant value for 
H. Frequently the value of H is estimated from the expression 
H = li’j6 where k’ is the thermal conductivity of the environ- 
ment and d the thickness of the layer across which a linear 
temperature profile would attain T,. The thickness S is not 
the thermal boundary layer thickness unless the temperature 
fdll is uniform but for any temperature variation into the 
environment it is possible to define the value of 6 as illustrated 
in Fig. I, which shows a typically thermal boundary layer 
profile which would be relevant to either a timewise devel- 
opment in a solid or stagnant fluid, or a steady state profile 
in streaming flow. The assumption ofa constant heat transfer 
equates to having chosen a constant value for 6; this is 
certainly valid asymptoticaliy (in time) for many problems 
where environmental conditions maintain a constant thermal 

Thermal Profile 

FIG. 1. A typical temperature profile in the environment and 
the associated layer thickness 6 defined by 

Flux = k’(T- T, )!6. 

boundary layer in the environment but it is well known that 
such an assumption is invalid for the initial period during 
which the thermal boundary grows towards this limit, though 
at any instant it is possible to calculate an effective thickness 
8(r). For many problems the timespan is sufficiently great 
that this initial development is relevant during only a small 
portion of the phenomenon and the imposition of a constant 
heat transfer coefficient induces insignificant error, but there 
are cases in which the development of the environmental 
layer cannot be ignored. In such cases it becomes necessary 
to solve for the conduction process in both the body and 
the environment; this is, of course, always necessary if the 
environnlent is stagnant or happens to be a solid rather than 
fluid. 

In this note a condition is constructed which links the flux 
to an integral involving the history of the surface temperature 
and thus enables the detailed calculation of the conduction 
in the environment to be avoided. This is deduced from a 
well-known exact solution for time-dependent one-dimen- 
sional conduction and provides a simple. but hitherto un- 
specified, surface condition which accommodates the time- 
wise development of the surface layer. 

ONE-DIMENSIONAL CONRUCTION 

Consider conduction in a semi-infinite environment [ > 0 
governed by 

where K’ is the thermal diffusivity. If the region is initially at 
uniform temperature T, and the temperature at 5 = 0 for 
t > 0 is specified as T(r) the temperature distribution is given 
(see p. 63 of Carslaw and Jaeger [I]) by 

i 
=Ki 0 = qxKr) 112 ” I ‘(f(J.)-T,) 

exp{-[Z/4K’(r-l)) 
x -.TrdA (3) 

and on differentiating this result, with respect to <, it is readily 
found that 

(4) 

From this it is possible to calculate the surface flux knowing 
only the time history at the surface, or vice versa; note 
that the temperature gradient at < = 0 is directed into the 
environment. Alternatively, on equating heat flux from the 
body to that into the environment, we may derive the 
relationship 

k!L=_ k’ d 
an (XK’) i/z dr 
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linking the surface temperature gradient within the body and 
its surface temperature. Since this must be satisfied through- 
out the conduction process it can be applied as a surpdce 
boundary condition for the conduction in the body without 
further r-cfcrence to the environment. 

(6) 
and transient functions h(l) = k&(;(t) and S(t) = k’!@(t)). 
The last of these is particularly useful in assessing a period 
in which it is more appropriate to use this model than that 
of a constant (asymptotic) thickness. Generally the variable 
heat transfer coefficient would be applied until the value of 
(f(t) attains the value of 6. Also the time varying heat transfer 

coellicient will be appropriate for all time in problems in 
which there is insutficient fluid motion to restrict the growth 
of the boundary layer. 

RESULTS AND DISCUSSION 

In the previous section attention has been focused on 
one-dimensional conduction. Clearly it is not precise to USC 
equation (6) as a formula for calculating the transient heat 
tmnsfer coefficient for non-planar boundaries, but for cases 
in which the radius ofcurvature of the surface is greater than 
the thickness of the developing thermal boundary layer in 
the environment any errors will bc of the second-order effect ; 
the validity of this constraint can easily bc checked as time 
lapses. In this respect it should be recognized that the formula 
for H, and hence h. also needs amending from H = k’:‘$ to 
accommodate curvature. It does not seem necessary to pre- 
sent a lengthy discussion section because the application to 
~)n~-dinlclisional problems is so simple that the signi~callce 
of the result may be assessed with comparative ease. As has 
been mentioned above it is always incorrect to impose a 
constant value for the heat transfer coefficient if the environ- 
ment is a solid or if the fluid is stagnant. In order to see the 
model can be equally rclcvant in problems whcrc there is an 
asymptotic film thickness consider the idealized situation in 
which the surface temperature increases linearly with time. 
In the situation where R/j-- T, = /il substitution in equa- 
tion (6) yields 

and 

R(t) = $rK’1)“?. 

The result is independent of ii but that is not surprising 
because this is a well-known solution of the heat conduction 
problem in a semi-infinite region. It is extremely obvious, 

but nevertheless important to reco@/e that the l’&m ofcj(r) 
predicts there is a period of time m which the time varying 
thickness c?(t) is less than 8 and hence tbc transient heat 
transfer coefficient will be greater than h. moreover the period 
will be greater for poorly conducting, or dilf‘using. cnvtron- 
mcnts. Two examples in whcl~ thcrc is need to USC cywtwn 

(6) rather than aconstant k are the heat conduction aspects of 
laser soldering and certain diffusion phenomena concerning 
submerged plant aeration. 

Laser soldering is ;I technique which has consldcrablc 
importance in fixing microcomputer components bccausc it 
permits large amounts of heat to bc directed at smait arcas 
in :L small time intcrvnl and avoid excessive (and damaging) 
global heating. Typical@ the solder pasic. which hasa surface 
exposed to the air (or perhaps nitrogen) is raised to approxi- 
mately 600 C in 0.2 s 171. On the assumption that the surface 
tcmpcrature rise is linear it I’ollows that the heating phase 
could bc complete before the developing thicknes\ CT(/) 
attained the sort of value l’rcquently imposed for 0: typically 
3 E ~O.OOl cm. 0. I cmJ (SW p. 20 ol’ Car&u and J;tcgcr [I]). 

IIowcvcr, it is not just rapid processes which dsmand 
caution. Consider, for example. diffusion of carbon dioxide 
from submerged plants to water. In this care the rclc\ant 
diffusivity D’. which replaces both k’ and ti’ in the heat 
transfer theory. has the \~aIuc I.86 x IO ’ cm’s ’ and it is 
therefore possible for appreciable time (up to the o&r 01 
an hour) to lapse before the asymptotic condition r&cant 
to stirring becomes a good boundary condition 131. 

CONCLUSION 

It has been shown that for conduction problems in which 
thcrc is heat Row into a uniform unbounded conducting 
cnvironmcnt the detailed calculation throuehout the 
environment can be replaced by a surface condiiion mhxh 
relates the surface temperature and surface fh~x. 

The practical use of the boundary condition is envisaged 
in numerical calculations of heat transfer or diffusion proh- 
lems. In each case the accumulation of the time-dependent 
integral included in equation (6) presents only a minor com- 
putational complication. 
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